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Abstract. For a class of delerministic systems chaotie dynamics entails wrregular
transitions between motions within a potential well (librations) and motions across a
potential barrier (rotations). The uecessary condition for the aecurrence of chaos - and
transitions - is that the systent's Melnikov function have simiple zeros. The behavior
of those systems’ stochastic counterparts, including their chaotic behavior, 15 simila rly
characterized by their Melnikov processes. The application of the Melnlkov method
shows that deterministic and stochastic excitations play similar roles in the promotion
of chaos, meaning that stochastic systems exhibiting transitions between librations
and rotations have chaotic behavior, including sensitivity to tuitial conditions, just like
their deterministic couniterparts, We briefly review the Melnikov method and its use to
obtain: criteria guaranleeing the non-cocurrance of transitions in systemns excited by
bounded processes; upper bounds for the probability that transitions can occur during
a specified time interval T systems excited by unbounded processes; and assessrents
of the influence of the excitation’s spectral density on the transition rate. We also
briefly review applications of Melntkov processes.

INTRODUCTION

Chaotic dynarmics theory and its applications were until recently concerned pri-
marily with deterministic systems. A technique developed within the framework of
chaotic dynamics, the Melnikov method, is applicable to a wide class of stochastic
dynamical systems as well. Originally, the Melnikov method was developed for
multistable planar systems with periodic or quasiperiodic excitation. The exten-
sion of the method for stochastically-excited systems is based on the approximation
of physically realizable stochastic processes by processes consisting of finite sums
of harmonics with random parameters. For each individual realization of the pro-
cess those parameters take on fixed values. The Melnikov method thus becomes
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applicable to svstems with stochastic excitation [ In thes paper we briclly review
Melnikov theory and applications that tHustrate s uselulness,

OVERVIEW OF MELNIKOV THEORY FOR
DETERMINISTIC AND STOCHASTIC SYSTEMS

A wide class of frictionless aud nnforced planar multistable systems have one
or more saddle points from which nongencric orbits homoclinic or heterochnic
otbits - emanate m forward and reverse time, These orbits Torm a separalrix
hetween regions of the phase plane. Motions starting inside (outside) the separatrix
stav inside {outside) the separatrix {or all time. If the system is subjected Lo a
perturbation of order ¢ € 1, and the perturbation is bounded and sulliciently
smootl, it follows from the persistence theorenn that the saddle points persist in
planes of section = const, where ! denoles time. Owing Lo the perturbation,
however, the homoclinic orbits. which may be viewed as roinciding stable and
unstable manifolds, become divided into a stable manifold and a separate, unstable
manifold. The Melnikov distance is the distance between the separated stable and
unstable manifolds, measured along a line normal to the unperturbed manifolds.
We now consider the system

7= V) 4 3G — Bi) (1

where V(x) is a multi-well potential. 1t can be shown that, to first order, the Mel-
nikev distance is propertional to the Melnikov function, which has the expression

() = [ (G - OdC - e (2)
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where the constant ¢ depends on h{t) = &{—(), and z({) is the ordinate of the
system’s homoclinic orbit [1]. Assume the cxcitation is

N

C(t) = D v cos{w;t) (i=12..,N) (3)
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The Melnikov function can then be written

l

N
ML) = =Bc+ vy wSlws) sinfwil + o, (4)

i=1

where the constant ¢ and the Melnikov scale factor S{w) depend on the system’s
homoclinic orbits. For sufficiently small ¢, if the Melnikov function has simple zeros,
the stable and unstable manifolds of the perturbed system intersect transversely.
The Melnikov condition for trapsverse intersection 1s

N
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Fhie intersections with a plane of scetion of intersecting stable and unstable mani-
folds Torm a homocline tanple that exhihits lobes defined by segments of the tanele
and wcnrve, called homoclinie tangle . consisting of the mnon of segments that maost
closelv approximates the homochnie orbit of the unpertarbed system. Transport
from the side 1o the outside ol the vegion enclosed by Lhe psendoseparatrix and
vice-versa is effected by lobes within the homochinie tangle. The mapping of cor-
tain arcas of the phase pline by the nonlinear dynamical system entails expansion,
contraction and folding leading 1o geometrical structures that may be studied by
using svinbolic dynamies techniques. Associated with such structares ave trajec
tories that may be sensitive to initial conditions, and may therefore be imply the
existence of a positive Lyapounov exponent. The Smale Birkholl theorem states
that for a periodically or quasiperiodically excited planar svstem Lo be chaotic its
Melnikov function must have sitaple veros (Mednikor necessary condilion for chaos),
['nhke the separatrix of an unperturbed svstem. which is impermeable in the sensc
that it cannot be crossed by any orbit. a pseudaseparatrix can be permeable. This
allows the occurrence of chaotic motions with irregular transitions between libra-
tional and rotational motions.

The extension to stochastically excited systemns of results obtained lor the quasiperi
odic excitation case follows front the fact that physically realizable stochastic pro-
cesses can be approximated as closcly as desired by quasiperiodic sumns with ran-

dorn parameters. For example, a Gaussian process G(1) with uniform distribution
over the interval [0,2w] may be approximated (or simulated) by the finite sum

N
CNU) = ZCGS(W,[ -f-([;‘,') {6)
1=
where {¢; = 1,2,..,N} are independent identically distributed random wari-

ables with uniform distribution over the interval [0, 27} and o; = [Vo(w)Aw /w2,
wh = 18w, NAW = Weptofy, and werojy 15 the cutofl frequency.

The ensemble of Melnikov functions induced by a stochastic process G(¢) with spec-
tral density function W,) is referred o as a Meluikov process [2] The expectation
and spectral density of the Melnikov process can be shown [1] to be, respectively,

EIM)] = —fe (7
War(w) = v 5% (w) Wo(w) (8)

Knowledge of the spectral density allows the estimation of the mean time between
consecutive zero upcrossings for the Melnikov process, 7,.Simple chaotic transport
considerations can then be used to show that 7, is a lower bound for the system’s
escape time 7.. I 7. is large, use of the Poisson distribution yields lower bounds
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for the probabiliny that no escapes will occur dnring o specified time inerval |21

I follows from the Meliikov condition or chaos that the lavger the ovlinates of

thie Melnikov process, the larger s the effectiveness of the excilation womducing
transitions, and conversely. The expression for the spectrnm of the Mealnikov pro-
cess. Wa(w). s uselul insolar as s provides information on the extent to which
the Melnikov seale Tactor, S{w). and the spectral densily of the exeitation. W (w),
are matched 1o vield birge - or small ~ ardinates of W (o).

Melnikov processes induced by other tvpes of stochastic processes can he defined
by similar approximations. In particular, consider the case of dichotomons noise

GUY = a (9)

[0+ (0 — Uty < F < (a4 n)iy. (10)

where n s the set of integers, the random varicable a is uniformly distributed
between 0 and 1, the independent random variables @, take on the valiues -1 and 1
with probabilities 1/2 and 1/2, respectively, and ¢, is a parameter of G{f). Trom
the Melnikov necessary condition for chaos if follows thai transitions induced by
the dichotomous excitation cannot occur if [3]

w73 < 0471, {11)

If the system is subjected to a multiplicative czrcitation ~{x,2)(t), then in the
expression of the Melnikov function the function A{!) in the Melnikov integral is
simply replaced by the product y(z, £)h(¢).

APPLICATIONS

Along-Shore Currents Induced by Randomly Fluctuating Wind Over a Corrugal-
ed Ocean Floor. This application entails a simple model of mesoscale wind-induced
alongshore ocean flow over a continental margin with variable bottom topogra-
phy. The model was originally developed for the case of forcing by surface stresses
fluctuating harmonically i time. Tt was extended in [2] for the case of stochastic
forcing. The unperturbed system has homoclinic orbits due to th e presence of
the sca bottom corrugations. The wind-induced flow can cause the motion to be
chaotic. The Melnikov method yields parameters for which the flow is chaotic if
the excitation is assumed to be harmonic, and upper bounds for the probability
that chaos can occur during any specified time if the excitation is stochastic.

Snap-Through of Continvous Buckied Column With Distributed Transverse Ran-
dom Load. In this application the Melnikov method is used to obtain criteria on
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the occurrence of uoise-induced jumps in a spatially-extended dynamical svstem.
The svstem chosen for illnstration is a vertical column. Snap-through ocowrs if the
column motion makes excursions bevond the column’s unstable, vertical equilibri-
um position {4].

Mcnikov-Based Open-Loop Control of Neise-Induced Escapes. We consider a one-
degree-of-freedom multistable svstem subjected to a stochastic excitation. We can
reduce that systeim’s escape rate by applying to it a control force that, in a trivial
control case, 1s proportional at all times to the exeitation, Lo within some short
time lag. A far more efficient control can be applied by using the information in-
herent in the Melnikov scale factor, and apply to the system a control force that has
negligible frequency content in the frequency range for which that factor is small.
By doing so we do not spend energy that would be ineflective from the control
standpoint, since its contributions te the controlled system’s Melnikov process —
which determines the escape rate  would be negligible [5.6].

Stochastic Resonance. Melnikov theory yiclds qualitative results on the basis of
which uselul inferences can be made on the hehavior of systems exhibiting stochas-
tic resonance. Basically, the Melnikov method uses the fact that the deterministic
and stochastic cxcitations play qualitatively cquivalent roles in the promotion of
chaos and escapes over a polential barrier, the motions being in both cases topo-
logically conjugate to a shift map {7]. This fact suggested the extension of SR
approaches beyond classical SR. Tt was shown in [7] that the SNR can alternatively
be improved by keeping the noise unchanged and adding a deterministic excita-
tion selected in accordance with Melnikov theory, rather than by increasing the
noise. Also, since Melnikov theory provides information on excitation frequencies
that are effective in increasing a system’s characteristic rate, the chaotic dynamics
approach makes it possible to assess the role of the excitation’s spectral density in
the enhancement of the SNR, a problem of interest in classical SR for which other
available approaches can be unwieldy.

Modeling of Auditory Nerve Fiber. [3]. Fxperiments have established two basic
featurcs of auditory necrve fiber dvnamics. First, mean firing rates produced by
harmonic excitation 1 the presence of weak noise are largest for excitation fre-
quencies contained in a relatively narrow "hest” interval; for frequencies cutside
that interval mcan firing rates decrease and, for both low and high frequencics,
become vanishingly small. Secand, white or vearly white noise excitation results in
multimodal interspike interval histograms (1SIH's) with modes approximately cqual
to integer multiples of the period corresponding to the fiber's best {requency. (Ior
a given expertiment an IS represents the number of occurrences of firings as a
function of the tirme interval separating them.) The Fitzhugh-Nagumo (FTIN) mod-
el appears to be unable to reproduce these two dynamical features, In the presence
of noise the disagreement between typical FHN model predictions and experimen-
tal results appears to be even stronger. Tn contrast, the Melnikov method leads
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to a strikingly suceessful modeling of the hehavior of the anditory nerve fiber as a

histable dyvnamical system experiencing chaotic behiavior nnder periodie, quasiperi
odic, and stochastic excitation [3].
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